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Abstract. We give a heuristic argument that shows how all the correlation functions at large
distances and times of a translationally invariant one-dimensional quantum liquid are determined
by one (bosons or spinless fermions) or two (spin-1/2 fermions) correlation exponents. The
argument is based on the observation that in the path-integral formulation of the problem the
effect of creation and destruction operators can be seen on inserting dislocations in a two-
dimensional crystal of particle world lines.

We consider a translationally invariant one-dimensional interacting quantum systems of
particles. According to the Feynman path-integral formalism [1], the statistical properties
of the wavefunction as functions of positionx and imaginary timet will be the same as
those of an ensemble of world lines at temperature ¯h.

For bosons or spinless fermionsthe macroscopic (long-wavelength) behaviour is
described by an action of the form

Aspinless= 1
2

∫
dx dt

(
µu̇2 + Ku′2

)
(1)

whereu(x, t) is a field describing the displacement of the particles away from a uniform
distribution. The two terms represent the kinetic energy (whereµ is the effective mass
density) and an elastic response due to the interparticle interactions (whereK is the bulk
compressibility). We note that in one dimension the distinction between bosons and spinless
fermions is not as significant as it is in higher dimensionality, because we cannot go from
a configuration to one with exchanged particles without having two particles at the same
point in space at some intermediate stage. If we restrict ourselves to the sector in which
the particles are in order along the line(x1 6 x2 6 . . . 6 xM), the Pauli exclusion
principle reduces to a boundary condition specifying the vanishing of the wavefunction
whenever two particles are at the same coordinate. It follows that for any interacting
fermion problem there is a corresponding interacting boson problem which has the same
action in the long-wavelength limit, and thus many of the same physical properties (e.g.
free fermions correspond to hard-core point bosons). The action (1) withrenormalizedµ

and K also describes a quantum many-body system placed in an external potential if the
latter is irrelevant in the renormalization group sense.

For fermions with spinwe could attempt a similar representation in terms of two fields
u↑ andu↓ for the two spin populations. However, the spin-up and spin-down electrons are
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physically identical and have the same interactions with particles of the same spin; then the
interparticle interaction between the two degenerate systems is never a small perturbation,
and the proper eigenstates are the sum and difference of the two fields [2, 3]. Thus the
natural variables for the problem are the mass (or charge) densityC = (u↑ +u↓)/2 and spin
densityS = (u↑ − u↓)/2. For a translationally invariant system this separation of spin and
charge is a rigorous property. An external periodic potential can destroy this separation,
notably in the cases when the spin ordering is incommensurate with the periodicity of the
potential [4, 5], or when the interaction between particles of the same spin is very strong
[3]; however, in many cases of interest the spin and charge fields are uncoupled, and the
original problem is split into two simpler problems:

Aspin-1/2 Fermi= 1
2

∫
dx dt

(
µCĊ2 + KCC ′2 + µSṠ

2 + KSS
′2
)
. (2)

The interpretation of the coefficients parallels those of the spinless case:KC and KS

describe the response to changes in density and total spin (and thus can be interpreted
as the compressibility and magnetic susceptibility);µC andµS are the dynamic coefficients
for the two fields and can be thought of as mass densities. In writing equation (2) we
assumed that neither the external potential nor the interaction between electrons of opposite
spin produce energy gaps in charge or spin excitation spectra.

The field theory expressed in (1) and (2) starts from elasticity theory; the description is
in terms of the sound and spin waves of the system. This might be regarded as an unusual
place to start; certainly in three dimensions we would expect that single-particle degrees
of freedom were more important, and indeed the theory for that case is written that way.
However, in the present case we can give two arguments why these are adequate models
and appropriate long-wavelength descriptions.

(1) A single-particle excitation is (to a first approximation) a motion of a single particle,
ignoring the presence of the others. In higher dimensions the particles may or may not be
able to move around each other, and then we can have liquids as well as solids. However, in
one dimension the particles cannot freely move past each other, and as a result the possible
condensed phases are closer to being non-crystalline solids.

(2) All systems have longitudinal sound waves. In higher-dimensional systems this
description is incomplete whenever transverse phonon modes are absent, as they are in
fluids and gases. In one dimension, however, the compressional modes necessarily exist,
and these exhaust the one degree of freedom that each particle has; the single-particle
motions are already implicitly included in our description.

A great deal of the description of the interacting quantum fluid can be given in terms
of the parameterg:

g = πh̄n2

√
µK

(3)

for the action (1) (with one internal degree of freedom), withn being the particle density,
and the parametersgc andgs for the system with spin

gC = πh̄(2n)2

√
µCKC

gS = πh̄(2n)2

√
µSKS

. (4)

The parameter 2n that appears in (4) is the total particle density. With the bareµ andK

these characterize the degree of quantum fluctuations in the spin and charge subsystems.
For sufficiently largegν , the external potential and the interaction between particles of the
opposite spin are irrelevant in the renormalization sense, which means that the spin and
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charge degrees of freedom are not localized. The other relevant combinations of theµ and
K for a gapless system are the sound velocities

c2
ν = Kν/µν ν = c, s. (5)

The parameters gν computed with therenormalizedµν and Kν (i.e. macroscopic and
measurable, as opposed to the microscopic values) determine the long-distance behaviour
of all the correlation functions [6–11]. The purpose of the present paper is to give a simple
construction for determining which combination of theg-values appears.

The simplest case is the Green function for bosons. The quantity that we wish to
calculate is

G(x, t) = 〈
ψ†(x, t)ψ(0, 0)

〉
(6)

where ψ†(x, t) is the operator that creates a particle. From the viewpoint of the path-
integral formalism that we are using, we must imagine a field of world lines running in the
t direction, and the expectation value in equation (6) measures the average amplitude for
having a world line that ends at (0, 0), and another that begins at (x, t), within an ensemble
with weights determined by (1).

Of course, the very first problem that we must address is that, in the original ensemble,
lines cannot end at all. This is simply solved by adding a term to the action that permits
this possibility with a very large energyEcore, so that the density of line breaks will be
extremely small. Then the Green function (6) can be interpreted as the probability that
having found a line end at the origin there is a simultaneous line beginning at distancex

from it, as shown in figure 1.

Figure 1. Dislocation pair in a two-dimensional crystal of world lines. This shows the
configuration of the particle world lines in one member of the ensemble. A particle is removed
at (x = 0, t = 0), terminating a line, and another particle is added elsewhere, giving rise to
another half-line. The wandering of the lines represents the quantum fluctuations.

In the two-dimensional crystal of world lines the line ends are oppositely directed
dislocations, which give rise to a distortion in the fieldu which has a Burger vectorn−1

(because one world line has disappeared); the distortion falls off asr−1 and thus gives a
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logarithmic energy (logarithmic action, in the quantum problem) [12]

Edislocation pair=
√

µK

2πn2
ln(nR) + Ecore ≡ h̄

2g
ln(nR) + Ecore (7)

whereR = √
x2 + c2t2 is the length coordinate in isotropic units (x, ct). The core energy

Ecore is large, so that the density of dislocations is small; in fact we shall assume that there
is just one pair present. The wavefunction for the quantum problem is the partition function
at ‘temperature’ ¯h for the world-line crystal, and so the probability that they are found at
distanceR from each other is then proportional to

Prob(R) ∝ exp
(−Edislocation pair/h̄

) ∝ (nR)−1/2g. (8)

This gives the leading term in the scaling behaviour of the Green function for a bosonic
system.

The Green function for a spinless fermionic system can be calculated in a similar way.
The argument leading to (8) continues to apply; however, the new feature here is that the
fermionic wavefunction changes sign as particles are moved past each other, so that we
must append to (8) a sign factor

Sign(R) ≈ 〈cos{πn[x + u(x, t) − u(0, 0)]}〉. (9)

Here nx is the number of world lines in the intervalx in a perfect crystal, and
u(x, t) − u(0, 0) is a correction for the quantum fluctuations in the locations of the
lines. The average is over the ‘thermal’ ensemble with Boltzmann weightAspinless/h̄

(1); in writing this expression it is assumed that there is no long-range order in the line
positions, so that the correlation function is translationally invariant. The effect of the
fluctuations is to decrease the expected phase factor cos(πnx) by a Debye–Waller factor
exp{−(πn)2〈[u(x, t) − u(0, 0)]2〉/2}; in two dimensions,(πn)2〈[u(x, t) − u(0, 0)]2〉/2 is
given by(g/2) ln(nR), with the result that

G(x, t) ∝ Prob(R) Sign(R) ≈ (nR)−(g/2+1/2g) cos(πnx). (10)

The Fourier transform of the equal-time Green function gives the single-particle momentum
distribution〈nk〉, and nearkF = πn it has the form

〈nk〉 = constant− Sign
(
k − kF

)∣∣k − kF

∣∣α (11)

whereα = g/2+ 1/2g − 1. This shows that there will not be a sharp Fermi surface in one
dimension, except for the special caseg = 1 (which includes the case of non-interacting
particles).

The argument can be generalized to the case of an arbitrary correlation function.
Consider the four-point function

C
(
x1, x2, x3, x4

) =
〈
ψ†(x1

)
ψ†(x2

)
ψ

(
x3

)
ψ

(
x4

)〉
(12)

where xi = (xi, cti) is the representation in which the action (1) is isotropic. Each
operator creates a dislocation (or a dislocation in each field, for particles with spin); the
dislocations interact as two-dimensional Coulomb charges, with an energy that depends
logarithmically on the distancesRij = √

(xi − xj )2 + c2(ti − tj )2 with a pre-factor ¯h/2g (for
pairs of dislocations of the same kind, corresponding to operatorsψψ or ψ†ψ†) or −h̄/2g

(for operator pairsψ†ψ). The four-point function generalizing the probability function (8)
is then given by the product of the resulting factorsR

±1/2g

ij :

Prob
(
x1, x2, x3, x4

) =
[

n−2R12R34

R13R14R23R24

]1/2g

. (13)
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The correlation function will have a phase factor, which is constructed by averaging the
product of phase factors for each operator:

Sign
(
x1, x2, x3, x4

) = 〈
φ
(
x1 + u1

)
φ
(
x2 + u2

)
φ
(
x3 + u3

)
φ
(
x4 + u4

)〉
(14)

where the average is over the Gaussian variablesui = u(xi, ti), and

φ(x) =
{

cos(πnx) for fermions

A + B cos(2πnx) for bosons
(15)

represents the leading Fourier components of the spatial variation in the phase of the
wavefunction. Frequently it is appropriate to keep just the leading (constant) term inφ

for the bosonic case, and then Prob() will be the leading term in the four-point correlation
function for bosons. With the assumption that there is no long-range order in the line
positions, only the translationally invariant combinations of thexi survive in the averaging;
for the fermionic four-point function the result is

Sign() ≈
[

n−2R12R34

R13R14R23R24

]g/2

cos
[
πn

(
x1 + x2 − x3 − x4

)]
+

[
n−2R14R23

R12R13R24R34

]g/2

cos
[
πn

(
x1 − x2 − x3 + x4

)]
+

[
n−2R13R24

R12R14R23R34

]g/2

cos
[
πn

(
x1 − x2 + x3 − x4

)]
(16)

and the leading term in the fermionic four-point function isC = Prob() × Sign(). For
the special casex1 ≈ x3, x2 ≈ x4 the four-point function reduces to the density–density
correlation function, as it should; Prob() (13) and the first two terms of (16) are constants
(in carrying the large-R estimate to short distances we putnR13 ≈ nR24 ≈ 1) giving〈

n
(
x1

)
n
(
x2

)〉 ∝ constant+ cos[2πn(x1 − x2)]

[(x1 − x2)2 + c2(t1 − t2)2]g
. (17)

This result also holds for bosons, but now the non-trivial spatial variation in the boson phase
must be considered to obtain the second term of (17).

The further generalization of this argument to particles with spin is straightforward
when spin and charge are uncoupled. Then the creation and destruction operators generate
dislocations in both the C and the S fields, and the exponents for the decay of the Green
function are the sum of the contributions from the two sectors independently; for fermions
with spin the result isα = gC/8 + gS/8 + g−1

C /2 + g−1
S /2 − 1. For the free-fermion case

(gC = gS = 2) this again givesα = 0.
This is not a rigorous derivation, since we have put in the effect of statistics by hand;

however, it is possible to represent the field operators in terms of bosonic operators [13–17]
and thereby to reproduce the results of this work more laboriously. Our argument reproduces
the results obtained using standard methods [18].
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